
Heart Screening Management System
Semester 2 Plan

Team Members
● Carlo Campanini (ccampanini2018@my.fit.edu)
● Chris Newberry (cnewberry2018@my.fit.edu)
● Drew Dunkelberger (ddunkelberge2018@my.fit.edu)
● John Dewey (jdewey2018@my.fit.edu)
● Noah Wilson (wilsonn2018@my.fit.edu)

Faculty Sponsor
● Eraldo Ribeiro (eribeiro@fit.edu)

Client
● Evant Ernst, CEO - Who We Play For
● Klynton Holmes, Tech Advisor - Who We Play For

Meetings

Date Discussion Points

1/14/2022 - Overall plan for semester 2
- Evaluation methods

- Beta testing
- User surveys
- Attending screening events

- High priority tasks for Milestone 4

mailto:ccampanini2018@my.fit.edu
mailto:cnewberry2018@my.fit.edu
mailto:ddunkelberge2018@my.fit.edu
mailto:jdewey2018@my.fit.edu
mailto:wilsonn2018@my.fit.edu
https://www.whoweplayfor.org
https://www.whoweplayfor.org


Goal and Motivation

Motivation
Sudden cardiac arrest (SCA) is the 2nd most common cause of death in youth. It is
also the leading cause of death for student athletes and death on school campuses.
This is especially an issue for athletes with a heart condition that seem completely
healthy on the surface, but are putting excessive strain on their heart. The common
approach of a simple history and physical examination is not effective at detecting
potentially fatal cardiac abnormalities in young adults. According to Dr. Joseph
Marek, the standard physical examination misses over 96% of those at risk for SCA.

Goal
The ultimate goal of this project is to increase the use of ECG screenings in
American high schools to minimize the cases of SCA in student athletes. This will be
done by improving upon Who We Play For (WWPF)’s current heart screening
program with an event-management system that provides automated processing of
results, event scheduling tools, ECG collection, and results delivery. The current
system is a pay-per-event, requires some setup, and is localized to the management
of Florida users. The new system will be scalable for use across all of the United
States.

Key Features

Feature Description

On-site registration System will support registration for
participants on the site via QR code; It
must be efficient, support a large amount
of users in a short span of time, and be
mobile-friendly

Scalable event scheduling and
management

Directors are able to create and manage
public or private heart screening events.
Participants can register for events online
or in-person via a link/QR code. This will
be done in a way such that the software
is scalable to different regions/states



Payment management Accountants will have a specialized
account for accessing payments for
events that have occurred or that have
been requested to be canceled to
streamline the process of verifying
payments. Once payments have been
confirmed, accountants have the ability to
mark the event as completed

Email notifications and results delivery Automatic email notifications occur the
day before an event, reminding
participants of the date and location.
Low-risk results will also be delivered via
email once the ECG data is processed
and interpreted.

Volunteer sign-up The current system does not have a role
for volunteers yet, making it difficult to
manage them. Volunteers should be able
to prepare for upcoming events by
viewing details and downloading
necessary spreadsheets ahead of time

Tools

Key Libraries
● Node Package Manager (NPM): Manages all the 3rd party libraries for our

project, packaging dependencies into node_module folders which can be
uploaded to AWS with source code.

● Mocha/Chai: Javascript test and assertion library used to write unit tests and
integration tests for our database and backend.

● Axios: Promise-based HTTP client for node.js that allows us to make GET and
POST requests to our backend.

APIs
● Payeezy API: Provides methods to process a variety of payment methods. Used

to charge and refund credit card payments by participants.



SDKs
● Google Suite SDK: Use an authorizer to check if a user is part of a specific

group (director, administrator, accountant, etc.)
● AWS Javascript SDK: Provides a way to make various method calls for AWS

resources from our backend

Frameworks/Runtimes
● VueJS: Used to construct single-page user interfaces for all roles of our system.
● NodeJS: Handles the backend of our system by allowing execution of JavaScript

outside the browser. Used to make asynchronous calls to our database, APIs,
and SDKs.

Languages
● Javascript: Source language for both the frontend and backend.
● Terraform: is utilized to write infrastructure as code (IaC) and deploy it to AWS

without the need for a console. It provides a simple method for setting up, making
changes to, and tearing down environments for different users.

● Bash: The team utilizes Makefiles to perform configured Terraform commands
and upload source code to AWS Lambda functions for the frontend and backend
of each role, as well as general service functions

AWS Services:
● DynamoDB: NoSQL database that supports key–value and document data

structures. Used to store event and registered participant information.
● Cognito: provides authentication, authorization, and user management. Used to

authenticate directors with Google, as well as accountants, administrators, and
volunteers in the future.

● API Gateway: creates, publishes, maintains, monitors, and secures REST,
HTTP, and WebSocket APIs at any scale. Used to make API calls to AWS as a
director or participant.

● S3: object storage service that offers industry-leading scalability, data availability,
security, and performance. Used to store the remote state of our Terraform
deployments. Will likely be used to create an endpoint for volunteers to access
updated participant information spreadsheets as sign-ups occur on-site.

● Simple Email Service (SES): email platform that provides an easy, cost-effective
way to send and receive emails. Used to send out email reminders, payment
receipts, and low-risk results to participants



● Step Functions: Visual workflow service that enables automation through state
machines. Used to automate the state transitions of finalized events until they
have occurred and integrate several different AWS services.

● Event Bridge: Serverless event bus to simplify event-driven applications at scale
with custom events. Used to enforce a cron job for daily participant email
reminders and event finalization at a specified time.

● CloudWatch: Allws collection, access, and correlation of data across all other
AWS resources. Used by our team to verify that events have occurred and debug
faulty resources.

● Lambda: compute service that allows code to run without provisioning or
managing servers. Used to make serverless calls between different AWS
services, as seen in our system diagram below.

Technical Challenges

Challenge Description

Gaining more experience with
full-stack development using the
required frameworks and tools

Team members are still focused on either
frontend or backend development, but
many tasks require knowledge in both
areas to complete. The efficiency of
feature implementation would benefit from

Time management Each team member has a busy schedule,
making it difficult to collaborate on the
project. The team needs to prioritize this
project and make efficient use of the time
where all team members are available.

Handling sensitive information and
money properly

We cannot make mistakes on payments
since we are handling other people’s
money and personal information



Design

System Architecture Diagram



Evaluation
In order to receive valuable evaluation results, we will deploy an AWS

environment for high school directors (HSDs) to perform beta testing in early March with
an actual (private) heart screening event. This event will likely be smaller scale than
typical heart screening events.

● In order to evaluate user experience, we allow beta testers access to surveys
along with an open-ended feedback section for continuous improvement.

○ A feedback button will be available to users on each UI
● In order to test the speed of our system compared to the original process, we will

compare the time it takes for a director and participant to perform various tasks
using our UI vs. the time it takes for those tasks on-site

○ Team members will attend an upcoming event(s) and repeatedly time
various tasks using the current process

■ Waiting time for participants to sign-up
■ Time it takes to complete the participant questionnaire
■ Time it takes a director to officialize an event
■ Time it takes participants to receive low-risk results (will be

implemented in our system in the future)
○ In the user survey, we will ask directors/participants to compare their

experience with the original heart screening event process (if applicable)
● In order to evaluate the reliability of our system, we will be tracking the number of

errors that occur using our system vs. the number of mistakes that occur on-site
using the current process. This includes:

○ Registration errors
○ Payment errors
○ Errors unique to our system

● In order to evaluate the accuracy of our system, we will continue to perform unit
testing and integration testing as we implement new features and roles.

○ Code coverage libraries such as c8 or karma-coverage may be
incorporated into our system to give a quantitative measure of how
thoroughly tested the individual components of our system are

Progress Summary
Module/Feature Completion % To Do

Service: Automatic
registration closure

100%



Participant: Automatic
time slot display in UI

100%

Service: Automated
event email reminders to
registered participants

100%

Participant: Vary
registration form
verbiage based on age

100%

Director/Participant:
Unique registration links
for on-site registration
and private events

95% Integration testing with
new state machine
changes

Service: Automatic
participant spreadsheet
updates on-site

50% Implementation and
testing in combination with
AWS state machine for
finalized events

Director/Accountant/A
dmin: Update event
state diagram and
implement roles.

50% Frontend updates to
director UI to match new
backend functionality.
Implement Accountant
and Admin roles and
functionality. Volunteer
role may be added in
future. More details below

Milestone 4 (Feb 14)
● Finish implementation, test, and demo live, periodic spreadsheet updates from

database as registration occurs on-site
● Implement, test, and demo director UI updates to reflect the changes introduced

by the new state diagram.
○ Directors can request deletion of an event that has not been Finalized
○ Finalized events are displayed in their own table with a column showing

their status (InSession, Happening, Occurred, etc.), which automatically
updates depending on the start and end time of the event

○ Completed events (reviewed by accountant) are moved to their own tab,
separate from active events

● Create surveys for participant and director beta testers using Google Forms and



link to each UI via a feedback button
● Implement, test, and demo Accountant UI

○ Create new GSuite account for Accountant role
○ Ability to mark events that have occurred or been approved for deletion as

Completed after reviewing payments
● Implement, test, and demo payment management system for Accountant role

○ Allow searching of payments by:
■ Participant
■ Event
■ Date
■ Date range

○ Ability to export payments to spreadsheet

Milestone 5 (Mar 21)
● Begin beta testing (late February)

○ Canary deployment - small group of people at a time
○ Start with private event, limited heart screening event

● Implement, test, and demo admin UI
○ Create new GSuite account for Admin role
○ Ability to:

■ Review all event details for requested deletions
■ Deny requests for deleting events
■ Accept requests for deleting events

● Collect evaluation results
● Create poster for Senior Design Showcase

Milestone 6 (Apr 18)
● Test/demo of the entire system

○ Address any bugs that arise though beta testing
● Evaluation results
● Create user/developer manual
● Create demo video

Task Matrix (Milestone 4)

Task Carlo Chris Drew John Noah

1. Finish implementation, 90% 10%



test, and demo automatic
spreadsheet updates for
on-site use

2. Implement, test, and
demo director UI updates
to reflect the changes
introduced by the new
state diagram.

100%

3. Demonstrate environment
setup for beta testers
(directors/participants)

100%

4. Create user survey for
directors and participants
using Google Forms and
link to UIs with a feedback
button

5% 80% 5% 5% 5%

5. Implement Accountant UI 50% 50%

6. Implement Accountant
payment search and
exporting functionality

33% 33% 33%

7. Begin collecting
evaluation data

20% 20% 20% 20% 20%

Task Descriptions
● Task 1: Finish implementation, test, and demo automatic spreadsheet updates

for on-site use
○ Create a spreadsheet that is published to the web
○ Export on-site sign up data to the published sheet

■ Published sheet will be updated every time a new sign up occurs or
in certain timed intervals

○ Create a spreadsheet to be used on the local testing computers on-site
■ Create a disk partition to share the sheet with multiple local

computers



○ Connect the local sheet to the published sheet and enable an automatic
refresh

● Task 2: Implement, test, and demo director UI updates to reflect the changes
introduced by the new state diagram.

○ Change director UI to display both InProgress (Unpublished, Published)
and Finalized (InSession, Happening, Occurred) events

○ Add a status column to Finalized event table, so that a director can track
the state of each of their events

○ Sort each table by date, so that older events are displayed at the top of
the tables

○ Add pagination, so that no more than 20 events are loaded by default. The
director will be able to scroll or click a button to fetch more events from the
database

○ Move Completed events to a separate tab in the UI, so that directors have
access to past event details and a confirmation that all payments were
received by participants

■ Accountants will be responsible for marking Occured events as
Completed once all payments have been received (future feature)

○ Add an action to request deletion of an InProgress event
● Task 3: Demonstrate environment setup for beta testers (directors/participants)

○ In order to prepare for beta testing in the next milestone, we will
demonstrate that we can deploy and AWS environment for both directors
and participants

○ 1 environment per group of beta testers
● Task 4: Create user survey for directors and participants using Google Forms

and link to UIs with a feedback button
○ In order to evaluate user experience, we will allow beta testers access to

surveys along with open-ended feedback for continuous improvement.
○ The surveys will consist of mainly scale-based questions regarding the

quality of our UI in terms of usability
○ Once the forms are completed, a feedback button will be created on the

director and participant UI to link to the surveys, respectively
● Task 5: Implement Accountant UI

○ Create new GSuite account for Accountant role
○ Responsible for reviewing payments for events that have occurred or that

have been requested to be deleted
○ Once all payments for an event have been accounted for, accountants

have ability to move an event to a Completed state (final state in state
diagram)

● Task 6: Implement Accountant payment search and exporting functionality



○ Allow accountants to search payments by:
■ Participant
■ Event
■ Date
■ Date range

○ Ability to export payments to spreadsheet
● Task 7: Begin collecting evaluation data

○ As time permits, team members will attend an upcoming event(s) and
repeatedly time various tasks using the current registration/screening
process

■ Depends on date and location of upcoming events
○ This task will be continued into next milestone as we begin beta testing

and time our system in practice

Approval
● "I have discussed with the team and approve this project plan. I will evaluate the

progress and assign a grade for each of the three milestones.”

Signature: ______________________________ Date: ____________________


