
American Heart
Screening Management

System

User/Developer Manual
Carlo Campanini ccampanini2018@my.fit.edu

Chris Newberry cnewberry2018@my.fit.edu

Jack Dewey jdewey2018@my.fit.edu

Noah Wilson wilsonn2018@my.fit.edu

Led By:

Drew Dunkelberger ddunkelberge2018@my.fit.edu

Sponsored By:

Dr. Eraldo Ribeiro eribeiro@fit.edu

Client:

Evan Ernst, CEO - Who We Play For

Klynton Holmes, Tech Advisor - Who We Play For

mailto:wilsonn2018@my.fit.edu

American Heart Screening Management System User/Developer Manual

Table of Contents
User/Developer Manual 1

Table of Contents 2

User Manual 5
Director 5
Event Creation 5

Event Type 5
Payment Option 5
Time Slots 5
… 5

Event Statuses 5
InProgress 6

Published 6
Unpublished 6

Finalized * 6
InSession 6
Happening 6
Occurred 6

Event Actions 6
Edit 6
Downloads 7

Sign-in Sheet 7
Cardea Sheet 7

Registration Link 7
Copy Registration Link 7
Get QR Code 7

Cardea Link 7
Finalize 7
Delete (Request) 7

Participant 7

2

American Heart Screening Management System User/Developer Manual

Registration 7
Public Page 7
Link / QR Code 7

Cancellation 7
Policy 7
Refunds 7

Accountant 7
Navigation 7

Yesterday’s Payments 7
Exporting to Spreadsheet 7

Search Payments 7
Filters 7
Behavior 7

Payment/Participant Actions 7
Refund 7
Cancel 8
Mark as No Show 8

Payeezy Merchant Account (First Data) 8

Developer Manual 9
System Architecture 9
State Diagrams 11

Event State Diagram - Controlled by Director 11
Participant State Diagram - Controlled by Account 11

Source Code 12
Project Structure 13
Logical Organization 14

Packages 14
Libraries 14
Database 14
Frontend 15

Views 15
Components 15

3

American Heart Screening Management System User/Developer Manual

Store 15
Backend 15

APIs 15
Core 15

Service 16
Close Registration 16
Update Event Status 17
Template Emails 17

Terraform 18
Components 18

Main 18
Shared 18

Makefile 18
Config 19

Terraform Default Vars 19
Tools and Configuration 19

Node Package Manager (NPM) 19
NPM Install Order 19
Common Issues 21
Uploading Changes 21

AWS 21
Project Configuration 21
AWS CLI v2 21

Terraform 21
Running the System 21

4

American Heart Screening Management System User/Developer Manual

User Manual

1. Director
1.1. Event Creation
In order to create an event, a director must click a “CREATE EVENT” button at

the top of the director UI. This brings up a form in which the director inputs the event
and participant details.

1.1.1. Event Type
Directors must outline whether the event created is a school, community, or

private event. School and community events are given a public type and are viewable
for registration by anyone, but private events are given a private status and are only
available for registration if a participant has the registration link distributed by the
director.

1.1.2. Payment Option
Directors must decide what the payment options for the event are. There are

three payment options: required, optional, and not required. Required means that all
participants must pay for the event on registration, optional means that students can
register without paying or decide to donate, and not required means that a student can
register without making a payment. If the participant is an adult, they must pay to
register regardless of the payment option.

1.1.3. Time Slots
When directors create an event, the timeslots for the event are generated using

the duration of the event and the number of slots per window. While events have an
InProgress status, participants must select a timeslot to register, however after an
event is Finalized the registration link for the event will skip timeslot selection.

1.2. Event Statuses
There are various statuses throughout the lifecycle of an event. Furthermore,

each status is comprised of a status and a sub-status in the form status#sub-status.

5

American Heart Screening Management System User/Developer Manual

There are two statuses, InProgress and Finalized, and each status has its own set of
sub-statuses. Each status is outlined in more detail below.

1.2.1. InProgress
The InProgress status is reserved for events that have not reached their start

date yet. Directors can edit these events and request deletion by an admin. They can
also choose to finalize the event early if desired. InProgress events can have one of
two sub-statuses, Published or Unpublished. Directors can switch an event between
these two sub-statuses by clicking a “Published” switch next to the event’s actions
menu.

1.2.1.1. Published

Published events are available for registration from participants.

1.2.1.2. Unpublished

Unpublished events are not shown to participants for registration.

1.2.2. Finalized *
A Finalized status denotes that an event is no longer modifiable; these events

can not be edited or deleted. There are three sub-statuses for a Finalized status:
InSession, Happening, and Occured.

1.2.2.1. InSession

InSession denotes that an event is a day before its scheduled start time at some
cutoff time (currently 5pm EST), or that the director of the event had finalized the event
prematurely, but the time for the event has not yet been reached.

1.2.2.2. Happening

Happening denotes that an event is happening on the current day.

1.2.2.3. Occurred

Occurred denotes that the event is past the day of the event.

6

American Heart Screening Management System User/Developer Manual

1.3. Event Actions
There are two tables, “In-Progress Events” and “Finalized Events”. Each table

contains a row for each event in its given table, and each event row contains a blue
“Events” button. Clicking this button will open a dropdown menu with various actions
you can table for your event. Each item in the actions bar is outlined in more detail
below.

1.3.1. Edit
The edit button allows the director to edit various details about an event such as

the name, time, location, type, etc. This option is only available to events with an
InProgress status.

1.3.2. Downloads
There are two download options for events, downloading a sign-in sheet and

downloading a Cardea Sheet.

1.3.2.1. Sign-in Sheet

The Download Sign-In Sheet button allows a director to download an excel
spreadsheet containing all the participants who signed into the given event.

1.3.2.2. Cardea Sheet

The Download Cardea Sheet button allows a director to download an excel
spreadsheet containing the cardea information of the participants of the given event.

1.3.3. Registration Link
There are two options for obtaining the registration link of an event, the Copy

Registration Link button and the Get QR Code button.

1.3.3.1. Copy Registration Link

The Copy Registration Link button allows a director to copy the url of an event’s
registration page. When clicked, a popup will be presented to the user containing the url
and the url will be automatically copied to the user’s clipboard.

7

American Heart Screening Management System User/Developer Manual

1.3.3.2. Get QR Code

The Get QR Code button allows the director to get a QR code for the url of the
event’s registration page. When clicked a third party site will pull up and the event url
will be in the input section to create the URL, so the director is able to easily click
generate QR and obtain their QR code.

1.3.4. Cardea Link
The Cardea Link button provides the director with a link that can be input into

excel to get automatic updates for Cardea Results. When clicked a popup displays the
URL of the link and the link is copied to the director’s clipboard. The Cardea Link
button is only available for events with a finalized status.

1.3.5. Finalize
The Finalize button allows the director to change an event’s status to Finalized.

This will make an event uneditable and undeletable. The Finalize button is only
available to InProgress events.

1.3.6. Delete (Request)
The delete button sends a request for event deletion to an administrator, and

“finalizes” the event so that no more participants can register. This action is only
available for InProgress events.

Currently there is no administrator role / UI to approve deletion; however, in the
future an administrator will examine and approve a deletion request, followed by
accountants refunding all involved participants.

2. Participant
2.1. Registration
The main feature of the participant UI is the ability to sign up for events created

by directors.

2.1.1. Public Page
The public registration page contains all public events available for registration.

Participants are able to scroll through the list of available events to find the one they

8

American Heart Screening Management System User/Developer Manual

want to sign up for and click an available time slot which will bring up a registration page
for the given event. Events can only appear on the public page if they are a public
event, the director has set the event to published, and the event has an
InProgress status.

2.1.2. Link / QR Code
If a participant has a link to the registration for an event via a URL or QR code,

they will be able to follow the link to a registration page for the given event. Links allow
participants to sign up for events of all types and sign up for events up until the event
ends to handle walk-ins.

2.2. Cancellation
Participants are able to cancel their registration for an event using a unique

cancellation code that they receive immediately after registration. Participant’s are
redirected to a confirmation after registration, containing cancellation details.
Participant’s also receive the code in their registration confirmation email. Below is a
snippet of the UI confirmation:

9

American Heart Screening Management System User/Developer Manual

2.2.1. Policy
No shows will not be considered for cancellation.

2.2.2. Refunds
Participants are able to request refunds by sending an email to the accountant

after canceling their registration. Refunds are only available to participants that have
paid for an event and have already canceled their registration. It is preferred that all
refunds and cancellations occur through the web application (as opposed to the
Payeezy Merchant Account) to keep the database consistent.

3. Accountant
3.1. Navigation
The accountant UI contains two tabs to navigate to pages with different

functionality. There are two tabs, Yesterday’s Payments and Search Payments.
The functionality of each tab is outlined in more detail below.

3.1.1. Yesterday’s Payments
The Yesterday’s Payments tab allows an accountant to view all payments made

on the day before the current day. Furthermore, there are two tables on the page, the
“Completed Events” table and the “Events to Review” table. Each of these will contain
rows for every participant of relevant events as well as a dropdown button on the left
side of the row that will expand the row to show all of the participants' responses for the
registration questions.

3.1.1.1. Exporting to Spreadsheet

On the accountant UI there is an “Export Payments” button in the Yesterday’s
Payments tab. When clicked this button will export all of the data in the Yesterday’s
Payments participant tables to an excel spreadsheet that the participant can download.
Here is an example spreadsheet:

10

American Heart Screening Management System User/Developer Manual

3.1.2. Search Payment

On the “Search Payments tab, accountants will be able to search for specific
payments based on a variety of inputs. Accountants are able to use any combination of
the given input fields in their search. When the blue “Search” button is clicked, each of
the non-empty fields will be used to filter the payments returned to the accountant. Each
returned payment is put into a row in a table on the “Search Payments” tab.

3.1.2.1. Filters

There are various filters an accountant can use to find payments. Accountants
can search by participant name, guardian name, phone number, email, event name,
and date. Each of these filters can be used individually or in combination with the
others.

3.2. Payment/Participant Actions
Each table, like the director’s event tables, contains an actions menu button for

each payment. Currently, the two supported actions are refunding a payment, marking a
participant as a no-show, and canceling a payment.

3.2.1. Refund
The refund button allows an accountant to refund a given payment. When clicked

this button will refund a participant’s payment and update the payment’s status to
refunded. Refunds are only available to payments that are greater than $0.00

11

American Heart Screening Management System User/Developer Manual

where the participant canceled registration or did not show up to the event they
registered for.

3.2.2. Cancel
The cancel button allows an accountant to cancel a participant’s

payment/registration. This will cancel the participant’s payment, but not refund it. This
action is needed for when participants request cancellation in registration. Cancellation
is available to all participants until an event is conducted.

3.2.3. Mark as No Show

The mark as no show button will note if a participant does not attend an event
they signed up for. This action is reserved for after an event. No shows will not be
refunded.

3.3. Payeezy Merchant Account (First Data)
Each payment made on the website will also be recorded by a Payeezy

merchant account. This can be used to check the accuracy of the site’s information.
Note: Refunds should be made through the website rather than the merchant

account

12

American Heart Screening Management System User/Developer Manual

Developer Manual

1. System Architecture

13

American Heart Screening Management System User/Developer Manual

Our system follows a serverless architecture by utilizing various AWS services.
All user requests from the frontend applications are handled by API Gateway via HTTP
API calls. These calls are handled by Lambda handler functions. Any dependent code
that the Lambda handler needs has been packaged and uploaded to the AWS console
with the function itself.

After receiving a request, the Lambda handler will make the corresponding
request to the service/business layer functions which can interact with the data access
object (DAO) to query, update, or remove from the database (DynamoDB). DynamoDB
is a scalable NoSQL database, which contains entries for both events and registered
participants.

To automate/manage the transition between states of an event, AWS step
functions are utilized to call system Lambda functions based on the start and end of an
event to update its status and perform various actions.

For further details of each module and interactions with AWS, see the Logical
Organization section.

14

American Heart Screening Management System User/Developer Manual

2. State Diagrams
2.1. Event State Diagram - Controlled by Director

2.2. Participant State Diagram - Controlled by Account

15

American Heart Screening Management System User/Developer Manual

3. Source Code

16

American Heart Screening Management System User/Developer Manual

3.1. Project Structure

17

American Heart Screening Management System User/Developer Manual

3.2. Logical Organization
Special notes:

● Each user type of the system (Director, Accountant, Participant, etc.) has
a corresponding user interface (UI), API, core logic file, and Terraform
configurations.

● All packages generally contain a test folder, in which any unit tests,
integration tests, or test configurations are added. The only exception is
the frontend, which does not have any written tests.

● Any directory that contains a package.json will generally contain a
node_modules directory (ignored by git), containing all dependencies
specified and a package-lock.json, containing the latest record of what
packages and versions were installed. For more information, see the NPM
section below.

3.2.1. Packages
3.2.1.1. Libraries

Common utilities used throughout the codebase. Contains modules for Google
Suite authentication, API calls to Payeezy (for processing and refunding payments),
HTTP response/CORS configuration, and debug logging.

3.2.1.2. Database

Isolates all interactions with the database (DynamoDB) to a single file,
dao-ems.js, which is logically organized by which user type(s) utilize that interaction in
their core logic file. Interactions with DynamoDB are made using the AWS SDK for
JavaScript. Use this documentation as a source of truth for implementing new queries,
or modifying existing ones.

The test.config.json file contains the environment variables for many of the unit
tests across the different packages. For ease of use, any variables that are dependent
on the client/environment are listed at the top, and contain
“<env>-<client>-<product>-<service>” in their value. These client-dependent variables
need to be changed when running tests, since as a developer you are a client for that
environment. Otherwise, you may be populating another developer’s database, or using
another one of their resources, making it difficult to debug.

18

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html

American Heart Screening Management System User/Developer Manual

3.2.1.3. Frontend

Contains a Vue.JS (v2) web application for each user type. To reduce time spent
on styling the UI, this project makes use of the Vue design library, Vuetify. The UI
Components section of this link provides an extensive list of reusable components and
examples to ease frontend development with Vue.

3.2.1.3.1. Views

An aggregate, user-defined UI component that is composed of one or more
different user-defined components. Can also be nested within other views. Some
top-level views are referenced for routing purposes.

3.2.1.3.2. Components

Atomic, reusable, user-defined UI components that are only used within views.

3.2.1.3.3. Store

Contains the methods to make API calls to the backend, including authentication,
configuration variables, and HTTP requests with Axios.

3.2.1.4. Backend
3.2.1.4.1. APIs

Contains the API gateways for making calls from the frontend to the backend for
a specific user type. Parses the supplied route/path and data from Axios to make the
correct business logic call in the core file, as explained below. A visual of the gateway
and its configurations can be found on AWS API Gateway.

Each API directory contains a Makefile which is used for uploading changes to
AWS. Make sure you understand the NPM install order and when re-installing is
necessary before uploading changes, since this module is dependent on several others.

3.2.1.4.2. Core

Contains the core business logic for each user type. Methods defined here are
generally called by the corresponding API and utilize the queries defined in the
database module to perform calculations regarding events, registration, payments, etc.

19

https://v2.vuejs.org/v2/guide/?redirect=true
https://vuetifyjs.com/en/introduction/why-vuetify/
https://axios-http.com/docs/intro
https://us-east-1.console.aws.amazon.com/apigateway/

American Heart Screening Management System User/Developer Manual

3.2.1.5. Service

The service module is responsible for carrying out system actions that are not
related to any specific user type. As a result, there is no separation between the core
logic and API here, since each sub-module has a very specific purpose.

The sub-modules are listed below, and are generally handlers that listen for a
specific event generated by AWS to carry out a service function. The only exception is
the template emails module, which is used solely for updating, testing, and uploading
various email templates used in the project.

3.2.1.5.1. Close Registration

This handler is activated daily at some specified time (currently 5-6pm EDT) by
AWS EventBridge to automatically close public registration (“Finalize”) for events
occurring the next day and send reminder emails to all registered participants.
Additionally, a spreadsheet containing all participant’s registration information is
uploaded temporarily to an AWS S3 bucket (cloud storage container), so that it can be
accessed by volunteers during the course of an event (see Update Event Status).

Finally, a state machine for each event is started, which controls the automatic
event state transitions from InSession -> Happening -> Occurred. This state machine
calls the update event status service function at the specified start and end times of an
event to achieve this. A visual of each state machine execution, their current status, and
logs are viewable on AWS Step Functions:

20

https://us-east-1.console.aws.amazon.com/events
https://s3.console.aws.amazon.com/s3
https://us-east-1.console.aws.amazon.com/states

American Heart Screening Management System User/Developer Manual

3.2.1.5.2. Update Event Status

The main purpose of this handler is to modify the state of an associated event to
the state specified by the caller. The caller is either the close registration service
function, specifying to either start or end a single event, or a periodic EventBridge rule
that specifies an update to all Happening events after each call.

When called with the update status, all Happening events are fetched from the
database and have their cardea sheet re-uploaded to the S3 bucket. This remote
spreadsheet is available via a pre-signed URL, allowing access to the spreadsheet for
anyone with the link. Event volunteers are able to connect excel sheets on local
machines to the one stored in S3, allowing them to get live updates for any on-site
registrations.

3.2.1.5.3. Template Emails

Unlike the other service modules, this one does not contain source code. The
Makefile here allows for uploading email templates to AWS Simple Email Service
(SES). By default, uploading and testing the template with a sample email are
commented out. To use the script, run ‘make tmpl=<template-name>’. Currently, the two
available templates are reminder and receipt. The script fetches the template name for

21

https://us-east-1.console.aws.amazon.com/ses/

American Heart Screening Management System User/Developer Manual

AWS using the database/dao-ems/test/test.config.json file. Make sure to change the
client name to yours before uploading the template.

Note: anytime the service infrastructure is re-deployed with Terraform, the templates
are reset to a default template due to the nature of Terraform. Simply re-run the Makefile
with the correct test.config.json environment variables to upload them again.

3.2.2. Terraform
3.2.2.1. Components

3.2.2.1.1. Main

Contains all the infrastructure as code (IaC) for AWS involving storage
(DynamoDB and S3), backend, frontend, and service. These configurations can
repeatedly be deployed for various environments/clients pairs.

3.2.2.1.2. Shared

Contains IaC for user pool authentication and certificates. Generally, changes will
not need to be made here.

3.2.2.2. Makefile

Contains commands that utilize Terraform to setup, destroy, and update
infrastructure using a specified configuration file and other arguments. The vast majority
of the time, you will be using the setupClientCmpnts command (corresponding to
main components) to deploy infrastructure changes to AWS. When running, you must
specify the following arguments:

- cfg: local path to config file to use
- env: environment you are developing on
- client: your developer client name

After setting up components for the first time, a live_deploys directory is
generated (hidden to git), containing the local state of terraform/AWS infrastructure for
any environment/client pairs that you deploy to AWS. Terraform will update these local
states each subsequent time you deploy infrastructure to save time.

Important: Do not run commands involving shared components unless absolutely
necessary and with guidance from the project maintainer

22

American Heart Screening Management System User/Developer Manual

3.2.2.3. Config

JSON object of all input variables into AWS infrastructure configuration (via
Terraform). We recommend that you leave this file as is since you do not want to commit
environment variables to source control. Instead, create a test/test.config.json and
use it for any Terraform/Makefile commands. This path is ignored by git and is only used
by you locally. Ask the project maintainer for the values to populate it with.

3.2.2.4. Terraform Default Vars

Default configuration variables for Terraform. The provider in our case is AWS.
The configuration in the Provider object needs to reference your developer
configuration stored in your local hidden ~/.aws directory (created for setting up the
AWS CLI v2) any time you use terraform to deploy infrastructure.

4. Tools and Configuration
4.1. Node Package Manager (NPM)

4.1.1. Packages and Installation
Each module contains a package.json file, specifying 3rd-party package

dependencies as well as local module dependencies (starting with @liodas/). In order
to use these dependencies when code is uploaded to AWS, you need to install these
dependencies using ‘npm install’. The order in which you install dependencies is
dictated by which modules depend on other modules and is outlined in the next section.

4.1.2. NPM Install Order
When cloning the project for the first time, you should first run ‘npm install’ in the

root ems directory. This will take the longest, as it installs all 3rd party dependencies.

Frontend
The general order for installing dependencies is as follows:
1. Root:

ems
2. Director & Accountant Web App

ems/packages/frontend/ui-web-app-director
ems/packages/frontend/ui-web-app-accountant

3. Participant Web App

23

American Heart Screening Management System User/Developer Manual

ems/packages/frontend/ui-web-app-participant

Backend
The general order for installing dependencies is as follows:
1. Root:

ems (Does not need to be run again if done above)
2. Library:

ems/packages/library/lib-logger
ems/packages/library/* (remaining modules)

3. Database:
ems/packages/database/dao-ems

5. Backend Core:
ems/packages/backend/core-director
ems/packages/backend/core-participant
ems/packages/backend/core-accountant

6. Backend API:
ems/packages/backend/api-director
ems/packages/backend/api-participant
ems/packages/backend/api-accountant

- Note: If you are uploading code to AWS (first time, or for a change). run make
client={name} env={version} instead. This command will run npm install before
uploading the changes to AWS.

7. Service:
ems/packages/service/svc-close-registration
ems/packages/service/svc-update-event-status

- Note: If you are uploading code to AWS (first time, or for a change). run make
client={name} env={version} instead. This command will run npm install before
uploading the changes to AWS.

Note: This is a general guideline for the order of installation, and may change as more
modules are added to the project or previous ones change. When in doubt, follow the

24

American Heart Screening Management System User/Developer Manual

dependencies listed in package.json. Module dependencies are prepended with
@liodas/

Installation Tips:

Once this install order is done, you only ever NEED to run ‘npm install’ when:
- A backend module depends on another that has changed, and you need to

upload code to AWS (to see changes reflected with the frontend)
- You switch to another branch where there are backend changes, and would like

to see those changes reflected with the frontend
- You merge in new changes from the main branch, and would like to see those

changes reflected with the frontend
- You re-clone the repository
- The node_modules folder gets corrupted in a module, which usually can be

resolved by removing it with “rm -r node_modules” followed by “npm install”

You DO NOT need to run ‘npm install’ when:
- You make changes to the frontend. These changes are reflected immediately in

browser or after a refresh
- You are making backend changes, but are only running tests locally. You will only

need to install once you are ready to upload and test the changes with the
frontend

- You are switching between branches, but do not need to see the changes
reflected with the frontend

4.2. AWS
4.3. AWS CLI v2 Configuration

● Purpose
○ Used to run AWS API commands via command line
○ These commands are used in the project Makefiles to upload code to

AWS
● Installation

25

American Heart Screening Management System User/Developer Manual

○ https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.ht
ml

● Configuration
○ Once installed, use the command, aws configure to step through several

config options to specify:

Option Value to Set

AWS Access Key ID <Get value from account maintainer,
corresponding to your user account>

AWS Secret Access Key <Get value from account maintainer,
corresponding to your user account>

Default region name us-east-1

Default output format <none>(hit enter)

○ To verify configuration, you can check the newly created, hidden .aws
directory located in your home directory

■ You should see your specified config options in the config and
credentials files here

■ You can easily get to this directory by using cd ~/.aws in your
terminal

○ To test that you have the correct configurations, try to upload changes to
own of your Lambda functions, as outlined below

4.4. Deploying/Uploading Changes to AWS

In order for changes to take place when testing through the UI, you need to
deploy any backend changes to AWS. This is done by using the Makefile present in
several of the modules. These include:

26

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

American Heart Screening Management System User/Developer Manual

● api-director
● api-participant
● api-accountant
● svc-close-registration
● svc-update-event-status

Following the general rule, you only need to run npm install in modules that depend
on files that you changed.

● For example, if you were testing the director UI and made a change to
database/dao-ems, you would need to run npm install in core-director and then
use the makefile to upload in api-director to ensure that it is referencing the
updated database code.

In order to upload changes, you must have AWS CLI v2 installed and configured.

4.5. Mocha & Chai Test Frameworks
The Mocha & Chai javascript packages are used to write unit/integration tests for

the project (backend). There are currently no automated tests for the frontend. All tests
are contained within test/ directories to distinguish them from source code. For more
information, read the documentation at the links below:

● Mocha: https://mochajs.org/
● Chai: https://www.chaijs.com/

Some of the test/ directories contain test resources for a fake participant or
event. The packages/database/dao-ems/test/test.config.json contains configurations
that are used in all tests throughout the project. Any configurations that should be
changed for your environment are listed at the top of this file.

4.6. Terraform

27

https://mochajs.org/
https://www.chaijs.com/

American Heart Screening Management System User/Developer Manual

● Terraform allows you to create infrastructure programmatically rather than
through the AWS console/GUI

○ You can create, destroy, and update resources using terminal commands
(and the Makefile under the terraform/ directory), and Terraform handles
all dependencies for you

○ This saves time as you make future changes to resources and need
changes to take effect across everyone’s environments without breaking
the system due to dependency conflicts

● Documentation for Terraform for AWS:
https://registry.terraform.io/providers/hashicorp/aws/latest/docs

○ Contains syntax and examples for creating all AWS resources
● When creating AWS resources that you are not familiar with, it is often beneficial

to create a hello world resource using the AWS console first
○ This allows you to see all of the available configuration options at once

and get a better feel for the service
○ Some services let you export the configurations as a JSON from the

console, which can sometimes be used in the Terraform code to create an
identical resource

■ Example: AWS Step Functions allows you to design state machines
graphically in the console. You can then export it as a JSON, which
can be pasted into Terraform to create an identical state machine
resource programmatically

4.7. API Configuration

● Whenever you checkout a branch from main, you should configure the API
Gateway Deploy URLs to match the ones corresponding to your developer
account

○ This ensure that you are using your own resources and not someone
else’s, which can make debugging difficult and interfere with their
environment

● URL Locations
○ There is an API deploy URL for each role’s UI:

28

https://registry.terraform.io/providers/hashicorp/aws/latest/docs

American Heart Screening Management System User/Developer Manual

■ packages/frontend/ui-webapp-<role>/source/store/apis/api.con
fig.js

○ Update the <ROLE>_APIGATEWAY_DEPLOY_URL to the URL provided
by the project maintainer

■ These values can also be obtained using tfoutput command in the
Terraform Makefile specifying your client name as a parameter

● Stashing your URLs
○ Since you don’t really want to commit your URL to history, you can instead

stash the changes using git
○ This allows you to quickly apply the changes with a single command when

checking out a new branch
○ Steps:

■ Checkout a clean branch without any changes (main will work fine)
■ Update the API deploy URLs to your own
■ Run git stash -m “Configure API URLs”

● Saves your changes with given message
■ Verify that changes were stashed, by running git stash list
■ You should see your changes at some index
■ To apply them, use git stash apply <index>

● This applies the changes to whatever branch you are on
without removing them from the stash

■ Stashing changes is useful in general when you want to switch
between different branches without committing changes to source
control yet

5. Running the System

Once you configure AWS CLI v2, set up your API Gateway URLs, and upload
code to your AWS resources, then you are ready to run the system:

● Navigate to the desired web application that you’d like to run at
packages/frontend/ui-webapp-<role>

● Serve the frontend:
○ Run npm run serve

29

American Heart Screening Management System User/Developer Manual

○ After completion, open localhost:8080
○ Any subsequent UI will be served on localhost:8081

● Follow user manual to gain general understanding of the frontend and available
actions for each user

Notes:
● If running participant UI and the director or accountant UI, run the participant UI

last, as the development environment is configured to use port 8081 for
registration links by default

● Currently, the director and accountant cannot be run simultaneously
○ This is because they currently share the same Google Suite account and

further setup is required with AWS Cognito

6. Useful Links

AWS Terraform Registry https://registry.terraform.io/providers/hashicorp/aws/lates
t/docs

AWS JS SDK
Documentation

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest
/AWS/DynamoDB.html

AWS Management
Console

https://us-east-1.console.aws.amazon.com/console/hom
e?region=us-east-1#

Mocha Test Framework https://mochajs.org/

Chai Assertion Library https://www.chaijs.com/

Vue v2 Guide https://v2.vuejs.org/v2/guide/

Vuetify Component Library https://vuetifyjs.com/en/components/

MDI Icon Search https://materialdesignicons.com/

30

https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB.html
https://us-east-1.console.aws.amazon.com/console/home?region=us-east-1#
https://us-east-1.console.aws.amazon.com/console/home?region=us-east-1#
https://mochajs.org/
https://www.chaijs.com/
https://v2.vuejs.org/v2/guide/
https://vuetifyjs.com/en/components/
https://materialdesignicons.com/

